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Mots-clés : Consistency and asymptotic normality, INteger-valued AR, INteger-valued GARCH, Neg-
ative Binomial and Poisson QMLE, Stationarity and ergodicity of Integer-valued time series models,
Weghted LSE.

Consider an integer-valued stochastic process {Xt, t ∈ Z}. Assume a parametric form for the conditional
mean :

E (Xt | Xt−1, Xt−2, . . . ) =λ (Xt−1, Xt−2, ...; θ0) = λt (θ0) = λt, t ∈ Z.

For most of the count time series models, in particular the Poisson INteger GARCH (INGARCH), the
Negative Binomial INGARCH and the INteger AR (INAR), that conditional mean has a linear form.
Estimating θ0 is obviously of primary importance, in particular for predicting the future values of Xt.
The maximum-likelihood estimator (MLE) is often readily computable—except for parameter-driven
models like the INAR model—but it requires to specify a conditional distribution (for instance Poisson
or Negative Binomial). In practice, the choice of the conditional distribution is an issue. There exists
actually no natural choice for the conditional distribution, or even for the condition variance υt. For
example, the choice of the Poisson distribution with intensity λt entails υt = λt, and is thus questionable
since it has been empirically observed that numerous count time series exhibit conditional overdispersion
(see e.g. Christou and Fokianos, 2014). Moreover the choice of a wrong conditional distribution may
affect the efficiency, or even the consistency, of the misspecified MLE of θ0.
In the present work, we focus on the estimation of the parameter θ0 of the conditional mean, without
assuming a specific form for the conditional distribution of the observations (such as for instance the
Poisson distribution). In particular, we are interested in estimators that could be consistent even if
the conditional variance is misspecified. An example of such misspecification-consistent estimator is the
Poisson QMLE (PQMLE). This estimator coincides with the MLE when the conditional distribution of
the observations is Poisson P(λt), but the PQMLE is consistent and asymptotically normal (CAN) for a
much broader class of conditional distributions (see Ahmad and Francq, 2016). However, this estimator is
in general inefficient when vt 6= λt. Motivated by the existence of overdispersed series for which vt > λt,
Aknouche, Bendjeddou and Touche (2018) studied the profile Negative Binomial QMLE (NBQMLE).
This estimator is also consistent for estimating θ0 under very mild regularity conditions, but may be
inefficient.
We propose and study alternative weighted least squares estimators (WLSE), which enjoy the same
consistency property as the PQMLE and NBQMLE when the conditional distribution is misspecified, but
gain in efficiency when vt is well specified. The asymptotic and finite sample properties of these estimators
have been studied. Compare to the above-mentioned QMLEs, the WLSE presents the advantages of
1) being of higher efficiency in some situations; 2) being asymptotically efficient when the conditional
distribution belongs to the linear exponential family; 3) having a standard asymptotic normal distribution
even when one or several coefficients of the conditional mean are equal to zero; 4) being explicit and
requiring no optimisation routine in INARCH models.
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